ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Три усталых ковбоя зашли в салун, и повесили свои шляпы на бизоний рог при входе. Когда глубокой ночью ковбои уходили, они были не в состоянии отличить одну шляпу от другой и поэтому разобрали три шляпы наугад. Найдите вероятность того, что никто из них не взял свою собственную шляпу.

Вниз   Решение


Иван Семёнов выполняет тест ЕГЭ по математике. Экзамен состоит из заданий трёх типов: A, B и C. К каждому из заданий типа А даны на выбор четыре варианта ответа, только один из которых верный. Всего таких заданий 10. Задания типа B и C требуют развёрнутого ответа. Так как Ваня постоянно прогуливал, его познания в математике неглубоки. Задания типа А он выполняет, выбирая ответы наугад. Первое из заданий типа В Ваня решает с вероятностью ⅓. Больше ничего Иван сделать не может. За правильный ответ на одно задание типа A ставится 1 балл, за задание типа B – 2 балла. С какой вероятностью Ваня наберёт больше 5 баллов?

Возьмите задания типа A из пробного варианта ЕГЭ 2008 года. (http://ege.edu.ru/demo/math.zip) и проведите 10 раз эксперимент по случайному выбору ответов. Сравните результат с полученным теоретически (для 5 правильных ответов). Убедитесь, что результаты не сильно отличаются.

ВверхВниз   Решение


Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 502]      



Задача 30320

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7

Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

Прислать комментарий     Решение

Задача 30321

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7,8

Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?

Прислать комментарий     Решение

Задача 30322

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 6,7

Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет).

Прислать комментарий     Решение

Задача 30324

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7

В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Прислать комментарий     Решение

Задача 30346

Тема:   [ Перестановки и подстановки (прочее) ]
Сложность: 2
Классы: 6,7,8

На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 502]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .