ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что  22225555 + 55552222  делится на 7.

   Решение

Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 368]      



Задача 78663

Темы:   [ Простые числа и их свойства ]
[ Тождественные преобразования ]
[ Арифметика остатков (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 8,9,10

Докажите, что если p и q – два простых числа, причём  q = p + 2,  то  pq + qp  делится на  p + q.

Прислать комментарий     Решение

Задача 116281

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 10,11

В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.

Прислать комментарий     Решение

Задача 116577

Темы:   [ Процессы и операции ]
[ Признаки делимости на 3 и 9 ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.
Из любого ли натурального числа A при помощи таких операций можно получить число A + 1?
(Если стирается единица в самом начале числа, а за ней сразу идут нули, то эти нули тоже стираются.)

Прислать комментарий     Решение

Задача 35176

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

Найдите число нулей, на которое оканчивается число  11100 – 1.

Прислать комментарий     Решение

Задача 30390

Темы:   [ Деление с остатком ]
[ Периодичность и непериодичность ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что  22225555 + 55552222  делится на 7.

Прислать комментарий     Решение

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 368]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .