ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что a1a2...an = an – an–1 + ... + (–1)n (mod 11). ![]() ![]() Найдите наибольшее шестизначное число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр. ![]() ![]() ![]() Докажите, что ½ (x² + y²) ≥ xy при любых x и y. ![]() ![]() ![]() Бухгалтер конторы "Рога и копыта" Балаганов составил штатное расписание – таблицу, в которой указаны все должности, количество сотрудников и их оклады (месячные зарплаты). Кроме того, указан средний оклад по конторе. Некоторые места Паниковский случайно заляпал вареньем, и стало невозможно прочитать, что там написано. ![]() ![]() ![]() Докажите, что число a1a2...anan...a2a1 – составное. ![]() ![]() |
Страница: 1 2 3 4 >> [Всего задач: 20]
Вася написал на доске пример на умножение двух двузначных чисел, а затем заменил в нем все цифры на буквы, причём одинаковые цифры – на одинаковые буквы, а разные – на разные. В итоге у него получилось АБ×ВГ = ДДЕЕ. Докажите, что он где-то ошибся.
Докажите, что a1a2...an = an – an–1 + ... + (–1)n (mod 11).
Докажите, что число 11...11 (2n единиц) – составное.
Докажите, что число a1a2...anan...a2a1 – составное.
A – шестизначное число, в записи которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 6. Докажите, что A не делится на 11.
Страница: 1 2 3 4 >> [Всего задач: 20] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |