ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть z = x + iy, w = u + iv. Найдите ![]() ![]() В таблице размером m×n записаны числа так, что для каждых двух строк и каждых двух столбцов сумма чисел в двух противоположных вершинах образуемого ими прямоугольника равна сумме чисел в двух других его вершинах. Часть чисел стёрли, но по оставшимся можно восстановить стёртые. Докажите, что осталось не меньше чем (n + m – 1) чисел. ![]() ![]() ![]() Докажите равенства: ![]() ![]() ![]() Первый вторник месяца Митя провёл в Смоленске, а первый вторник после первого понедельника — в Вологде. В следующем месяце Митя первый вторник провёл во Пскове, а первый вторник после первого понедельника — во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов? ![]() ![]() ![]() Девять одинаковых воробьёв склёвывают меньше, чем 1001 зёрнышко, а десять таких же воробьёв склёвывают больше, чем 1100 зёрнышек. По скольку зёрнышек склёвывает каждый воробей? ![]() ![]() ![]() Найдите наибольшее число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр. ![]() ![]() ![]() A – шестизначное число, в записи которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 6. Докажите, что A не делится на 11. ![]() ![]() |
Страница: 1 2 3 4 >> [Всего задач: 20]
Вася написал на доске пример на умножение двух двузначных чисел, а затем заменил в нем все цифры на буквы, причём одинаковые цифры – на одинаковые буквы, а разные – на разные. В итоге у него получилось АБ×ВГ = ДДЕЕ. Докажите, что он где-то ошибся.
Докажите, что a1a2...an = an – an–1 + ... + (–1)n (mod 11).
Докажите, что число 11...11 (2n единиц) – составное.
Докажите, что число a1a2...anan...a2a1 – составное.
A – шестизначное число, в записи которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 6. Докажите, что A не делится на 11.
Страница: 1 2 3 4 >> [Всего задач: 20] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |