ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В стране 100 городов, некоторые из которых соединены авиалиниями. Известно, что от каждого города можно долететь до любого другого (возможно, с пересадками). Докажите, что можно побывать во всех городах, совершив не более  а) 198 перёлетов;  б) 196 перелётов.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 383]      



Задача 111793

Темы:   [ Ориентированные графы ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Автор: Гарбер М.

В классе учится 15 мальчиков и 15 девочек. В день 8 Марта некоторые мальчики позвонили некоторым девочкам и поздравили их с праздником (никакой мальчик не звонил одной и той же девочке дважды). Оказалось, что детей можно единственным образом разбить на 15 пар так, чтобы в каждой паре оказались мальчик с девочкой, которой он звонил. Какое наибольшее число звонков могло быть сделано?

Прислать комментарий     Решение

Задача 30793

Тема:   [ Деревья ]
Сложность: 4
Классы: 8,9

Докажите, что в любом связном графе можно удалить вершину вместе со всеми выходящими из нее рёбрами так, чтобы он остался связным.

Прислать комментарий     Решение

Задача 30794

Темы:   [ Деревья ]
[ Принцип крайнего (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

В стране 100 городов, некоторые из которых соединены авиалиниями. Известно, что от каждого города можно долететь до любого другого (возможно, с пересадками). Докажите, что можно побывать во всех городах, совершив не более  а) 198 перёлетов;  б) 196 перелётов.

Прислать комментарий     Решение

Задача 30803

Тема:   [ Планарные графы. Формула Эйлера ]
Сложность: 4
Классы: 9

Докажите, что в плоском графе есть вершина, степень которой не превосходит 5.

Прислать комментарий     Решение

Задача 30804

Темы:   [ Планарные графы. Формула Эйлера ]
[ Сочетания и размещения ]
Сложность: 4
Классы: 9

Каждое ребро полного графа с 11 вершинами покрашено в один из двух цветов: красный или синий.
Докажите, что либо "красный", либо "синий" граф не является плоским.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .