ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Каждое ребро полного графа с 11 вершинами покрашено в один из двух цветов: красный или синий. |
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 383]
В классе учится 15 мальчиков и 15 девочек. В день 8 Марта некоторые мальчики позвонили некоторым девочкам и поздравили их с праздником (никакой мальчик не звонил одной и той же девочке дважды). Оказалось, что детей можно единственным образом разбить на 15 пар так, чтобы в каждой паре оказались мальчик с девочкой, которой он звонил. Какое наибольшее число звонков могло быть сделано?
Докажите, что в любом связном графе можно удалить вершину вместе со всеми выходящими из нее рёбрами так, чтобы он остался связным.
В стране 100 городов, некоторые из которых соединены авиалиниями. Известно, что от каждого города можно долететь до любого другого (возможно, с пересадками). Докажите, что можно побывать во всех городах, совершив не более а) 198 перёлетов; б) 196 перелётов.
Докажите, что в плоском графе есть вершина, степень которой не превосходит 5.
Каждое ребро полного графа с 11 вершинами покрашено в один из двух цветов: красный или синий.
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 383] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|