ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В некотором государстве 101 город. а) Каждый город соединен с каждым из остальных дорогой с односторонним движением, причём в каждый город входит 50 дорог и из каждого города выходит 50 дорог. Докажите, что из каждого города можно доехать в любой другой, проехав не более чем по двум дорогам. б) Некоторые города соединены дорогами с односторонним движением, причём в каждый город входит 40 дорог и из каждого города выходит 40 дорог. Докажите, что из каждого города можно добраться до любого другого, проехав не более чем по трём дорогам. Решение |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 383]
В некоторой стране каждые два города соединены либо авиалинией, либо железной дорогой. Докажите, что
Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов.
В одном государстве 100 городов и каждый соединён с каждым дорогой с односторонним движением. Докажите, что можно поменять направление движения не более чем на одной дороге так, чтобы от каждого города можно было доехать до любого другого.
В некотором государстве 101 город. а) Каждый город соединен с каждым из остальных дорогой с односторонним движением, причём в каждый город входит 50 дорог и из каждого города выходит 50 дорог. Докажите, что из каждого города можно доехать в любой другой, проехав не более чем по двум дорогам. б) Некоторые города соединены дорогами с односторонним движением, причём в каждый город входит 40 дорог и из каждого города выходит 40 дорог. Докажите, что из каждого города можно добраться до любого другого, проехав не более чем по трём дорогам.
В ориентированном графе 101 вершина. У каждой вершины число входящих и число выходящих рёбер равно 40. Доказать, что из каждой вершины можно попасть в любую другую, пройдя не более чем по трём ребрам.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 383] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|