ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найти все такие натуральные числа p, что p и  2p² + 1  – простые.

   Решение

Задачи

Страница: << 200 201 202 203 204 205 206 >> [Всего задач: 2440]      



Задача 31285

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Найти все такие натуральные числа p, что p и  2p² + 1  – простые.

Прислать комментарий     Решение

Задача 31289

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что существует бесконечно много натуральных чисел, не представимых в виде
  a)  x² + y²;   б)  x² + y² + z²  ; в)  x³ + y³ + z³.

Прислать комментарий     Решение

Задача 31302

Темы:   [ Уравнения в целых числах ]
[ Простые числа и их свойства ]
[ Разложение на множители ]
Сложность: 3
Классы: 6,7,8

Решить в простых числах уравнение  pqr = 7(p + q + r).

Прислать комментарий     Решение

Задача 31348

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 6,7,8

В комнате стоят несколько четырёхногих стульев и трёхногих табуреток. Когда на всех стульях и табуретках сидит по человеку, в комнате всего 39 ног. Сколько в комнате стульев и сколько табуреток?

Прислать комментарий     Решение

Задача 31371

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9,10

Сколько решений в натуральных числах имеет уравнение   [x/10] = [x/11] + 1?

Прислать комментарий     Решение

Страница: << 200 201 202 203 204 205 206 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .