ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На прямой дано 50 отрезков.
Докажите, что либо некоторые восемь отрезков имеют общую точку, либо найдутся восемь отрезков, никакие два из которых не имеют общей точки.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 222]      



Задача 34991

Темы:   [ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 4-
Классы: 8,9,10

На прямой дано 50 отрезков.
Докажите, что либо некоторые восемь отрезков имеют общую точку, либо найдутся восемь отрезков, никакие два из которых не имеют общей точки.

Прислать комментарий     Решение

Задача 97783

Темы:   [ Принцип крайнего (прочее) ]
[ Последовательности (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Анджанс А.

Прислать комментарий     Решение


Задача 107762

Темы:   [ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Степень вершины ]
Сложность: 4-
Классы: 8,9,10

Каждый из 1994 депутатов парламента дал пощечину ровно одному своему коллеге. Докажите, что можно составить парламентскую комиссию из 665 человек, члены которой не выясняли отношений между собой указанным выше способом.

Прислать комментарий     Решение

Задача 110136

Темы:   [ Принцип крайнего (прочее) ]
[ Степень вершины ]
Сложность: 4-
Классы: 7,8,9,10

На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода.
Какое наибольшее число людей могло остаться в конце?

Прислать комментарий     Решение

Задача 35412

Темы:   [ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10,11

25 дачников получили садовые участки. Каждый участок представляет собой квадрат 1×1, и все участки вместе составляют квадрат 5×5. Каждый дачник враждует не более, чем с тремя другими дачниками. Докажите, что можно распределить участки таким образом, чтобы участки враждующих дачников не были бы соседними (по стороне).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .