ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В четырёхугольнике KLMN, вписанном в окружность, биссектрисы углов K и N пересекаются в точке P, лежащей на стороне LM. Известно, что отношение длины отрезка KL к длине отрезка MN равно b. Найдите:

а) отношение расстояний от точки P до прямых KL и MN;

б) отношение длины хорды LM к длине хорды MN.

   Решение

Задачи

Страница: << 171 172 173 174 175 176 177 >> [Всего задач: 2247]      



Задача 52917

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
Сложность: 5
Классы: 8,9

В четырёхугольнике KLMN, вписанном в окружность, биссектрисы углов K и N пересекаются в точке P, лежащей на стороне LM. Известно, что отношение длины отрезка KL к длине отрезка MN равно b. Найдите:

а) отношение расстояний от точки P до прямых KL и MN;

б) отношение длины хорды LM к длине хорды MN.

Прислать комментарий     Решение


Задача 52918

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
Сложность: 5
Классы: 8,9

На дуге окружности, стягиваемой хордой KN, взяты точки L и M. Биссектрисы углов KLM и LMN пересекаются в точке P, лежащей на хорде KN. Известно, что отношение длины хорды KL к длине хорды KN равно $ {\frac{2}{5}}$. Найдите:

а) отношение расстояний от точки P до прямых KL и MN;

б) отношение площадей треугольников KLP и MPN.

Прислать комментарий     Решение


Задача 57017

Тема:   [ Описанные четырехугольники ]
Сложность: 5
Классы: 8,9

Дан выпуклый четырехугольник ABCD. Лучи AB и CD пересекаются в точке P, а лучи BC и AD — в точке Q. Докажите, что четырехугольник ABCD описанный тогда и только тогда, когда выполняется одно из следующих условий:  AB + CD = BC + AD, AP + CQ = AQ + CP или  BP + BQ = DP + DQ.
Прислать комментарий     Решение


Задача 57018

Тема:   [ Описанные четырехугольники ]
Сложность: 5
Классы: 8,9

Через точки пересечения продолжений сторон выпуклого четырехугольника ABCD проведены две прямые, делящие его на четыре четырехугольника. Докажите, что если четырехугольники, примыкающие к вершинам B и D, описанные, то четырехугольник ABCD тоже описанный.
Прислать комментарий     Решение


Задача 57023

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Четырехугольник ABCD вписанный; Hc и Hd — ортоцентры треугольников ABD и ABC. Докажите, что CDHcHd — параллелограмм.
Прислать комментарий     Решение


Страница: << 171 172 173 174 175 176 177 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .