ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В четырёхугольнике ABCD, вписанном в окружность, диагонали AC и BD перпендикулярны и пересекаются в точке Q. Отрезок, соединяющий вершину C с серединой отрезка AD, равен 3. Расстояние от точки Q до отрезка BC равно 1, сторона AD равна 2. Найдите AQ.
![]() ![]() Две окружности пересекаются в точках A и B. Через точку B проводится прямая, пересекающая вторично окружности в точках C и D, а затем через точки C и D проводятся касательные к этим окружностям. Докажите, что точки A, C, D и точка P пересечения касательных лежат на одной окружности.
![]() ![]() ![]() Две окружности касаются внутренним образом. Прямая, проходящая через центр большей окружности, пересекает её в точках A и D, а меньшую окружность — в точках B и C. Найдите отношение радиусов окружностей, если AB : BC : CD = 3 : 7 : 2.
![]() ![]() |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 236]
В угол вписаны две окружности; одна из них касается сторон угла в точках K1 и K2, а другая — в точках L1 и L2. Докажите, что прямая K1L2 высекает на этих двух окружностях равные хорды.
Точка M лежит вне окружности радиуса R и удалена от центра на расстояние d. Докажите, что для любой прямой, проходящей через точку M и пересекающей окружность в точках A и B, произведение MA . MB одно и то же. Чему оно равно?
Две окружности касаются внутренним образом. Прямая, проходящая через центр большей окружности, пересекает её в точках A и D, а меньшую окружность — в точках B и C. Найдите отношение радиусов окружностей, если AB : BC : CD = 3 : 7 : 2.
Две окружности касаются внутренним образом. Прямая, проходящая через
центр меньшей окружности, пересекает б
В треугольнике ABC сторона BC равна 4, а медиана, проведённая к этой стороне, равна 3. Найдите длину общей хорды двух окружностей, каждая из которых проходит через точку A и касается BC, причём одна касается BC в точке B, а вторая — в точке C.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 236] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |