ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В некоторой стране 1985 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. Могло ли случиться, что в результате все 1985 самолётов оказались на 50 аэродромах? (Землю можно считать плоской, а маршруты прямыми; попарные расстояния между аэродромами предполагаются различными.) ![]() ![]() На плоскости даны две окружности радиусов 4 и 3 с центрами в точках O1 и O2 , касающиеся некоторой прямой в точках M1 и M2 и лежащие по разные стороны от этой прямой. Отношение отрезка O1O2 к отрезку M1M2 равно ![]() ![]() ![]()
В равнобедренной трапеции KLMN (ML параллельно NK)
каждая из сторон KL, LM и MN равна 1. Сторона LM — меньшее
основание трапеции. Точка P, середина основания KN, и точка Q,
середина стороны MN, соединены отрезком прямой. Известно, что
величина угол QPN равен
![]() ![]() ![]() В равнобедренном треугольнике ABC (AB = BC) проведена высота CD . Угол BAC равен α . Радиус окружности, проходящей через точки A , C и D , равен R . Найдите площадь треугольника ABC . ![]() ![]() |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 312]
Из точки A проведены две прямые, касающиеся окружности радиуса R в точках C и B, причём треугольник ABC — равносторонний. Найдите его площадь.
В прямоугольной трапеции отношение диагоналей равно 2, а отношение оснований равно 4. Найдите углы трапеции.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 312] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |