ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Величины углов при вершинах A, B, C треугольника ABC составляют арифметическую прогрессию с разностью π/7. Биссектрисы этого треугольника пересекаются в точке D. Точки A1, B1, C1 находятся на продолжениях отрезков DA, DB, DC за точки A, B, C соответственно, на одинаковом расстоянии от точки D. Докажите, что величины углов A1, B1, C1 также образуют арифметическую прогрессию. Найдите её разность.

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 191]      



Задача 34844

Темы:   [ Отношение порядка ]
[ Геометрическая прогрессия ]
Сложность: 5
Классы: 9,10

Натуральные числа от 1 до n расставляются в ряд в произвольном порядке. Расстановка называется плохой, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются хорошими. Докажите, что количество хороших расстановок не превосходит 81n.
Прислать комментарий     Решение


Задача 67163

Темы:   [ Арифметика остатков (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 5
Классы: 8,9,10,11

В бесконечной арифметической прогрессии, где все числа натуральные, нашлись два числа с одинаковой суммой цифр. Обязательно ли в ней найдётся ещё одно число с такой же суммой цифр?
Прислать комментарий     Решение


Задача 67298

Темы:   [ Теория алгоритмов (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 5
Классы: 8,9,10,11

Назовём рассадку $N$ кузнечиков на прямой в различные её точки $k$-удачной, если кузнечики, сделав необходимое число ходов по правилам чехарды, могут добиться того, что сумма попарных расстояний между ними уменьшится хотя бы в $k$ раз. При каких $N\geqslant2$ существует рассадка, являющаяся $k$-удачной сразу для всех натуральных $k$? (В чехарде за ход один из кузнечиков прыгает в точку, симметричную ему относительно другого кузнечика.)
Прислать комментарий     Решение


Задача 60281

Темы:   [ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Арифметическая прогрессия ]
Сложность: 2
Классы: 7,8,9

Докажите тождество: 1 + 3 + 5 +...+ (2n – 1) = n2.
Прислать комментарий     Решение


Задача 53388

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Арифметическая прогрессия ]
Сложность: 2+
Классы: 8,9

Величины углов при вершинах A, B, C треугольника ABC составляют арифметическую прогрессию с разностью π/7. Биссектрисы этого треугольника пересекаются в точке D. Точки A1, B1, C1 находятся на продолжениях отрезков DA, DB, DC за точки A, B, C соответственно, на одинаковом расстоянии от точки D. Докажите, что величины углов A1, B1, C1 также образуют арифметическую прогрессию. Найдите её разность.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 191]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .