ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан треугольник ABC, в котором  AC = BC = 1,  ∠B = 45°.  Найдите угол A.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 239]      



Задача 53694

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Возможно ли, чтобы одна биссектриса треугольника делила пополам другую биссектрису?

Прислать комментарий     Решение

Задача 54011

Темы:   [ Против большей стороны лежит больший угол ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Окружность, вписанная в треугольник ABC касается его сторон AB и AC соответственно в точках M и N. Докажите, что  BN > MN.

Прислать комментарий     Решение

Задача 54018

Темы:   [ Против большей стороны лежит больший угол ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

В треугольнике ABC известно, что  AB < BC < AC,  а один из углов вдвое меньше другого и втрое меньше третьего. Найдите угол при вершине A.

Прислать комментарий     Решение

Задача 54721

Темы:   [ Теорема синусов ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC, в котором  AC = BC = 1,  ∠B = 45°.  Найдите угол A.

Прислать комментарий     Решение

Задача 55205

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Стороны треугольника не превосходят 1. Докажите, что его площадь не превосходит  .

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .