ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Параллельный перенос
>>
Параллельный перенос (прочее)
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что композиция трёх симметрий относительно параллельных прямых l1, l2 и l3 есть осевая симметрия. Решение |
Страница: << 1 2 3 4 >> [Всего задач: 18]
На плоскости даны прямая l и точка M. Пусть M1 — точка, симметричная точке M относительно прямой l. При параллельном переносе прямой l в перпендикулярном ей направлении на расстояние h прямая l перешла в прямую l1. Докажите, что образ M2 точки M при симметрии относительно прямой l1 получается из точки M1 параллельным переносом в том же направлении на расстояние 2h.
Докажите, что композиция параллельного переноса в направлении, перпендикулярном некоторой прямой, и симметрии относительно этой прямой есть осевая симметрия.
Существует ли: а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые?
Докажите, что композиция трёх симметрий относительно параллельных прямых l1, l2 и l3 есть осевая симметрия.
Докажите, что композиция симметрий относительно n параллельных прямых l1, l2, ..., ln есть: а) параллельный перенос, если n чётно; б) осевая симметрия, если n нечётно.
Страница: << 1 2 3 4 >> [Всего задач: 18] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|