Страница:
<< 173 174 175 176
177 178 179 >> [Всего задач: 2247]
Окружность радиуса
r1 касается сторон
DA,
AB
и
BC выпуклого четырехугольника
ABCD, окружность радиуса
r2 —
сторон
AB,
BC и
CD; аналогично определяются
r3 и
r4.
Докажите, что

+

=

+

.
Четырехугольник
ABCD вписанный. Докажите, что

=

.
|
|
Сложность: 5 Классы: 8,9,10
|
Расстояния от центра описанной окружности остроугольного
треугольника до его сторон равны
da,
db и
dc. Докажите,
что
da +
db +
dc =
R +
r.
Вписанная окружность касается сторон
BC,
CA и
AB в точках
A1,
B1 и
C1. Пусть
Q — середина отрезка
A1B1. Докажите, что
B1C1C =
QC1A1.
|
|
Сложность: 5 Классы: 8,9,10
|
Биссектриса угла
A треугольника
ABC пересекает
описанную окружность в точке
D. Докажите, что
AB +
AC 
2
AD.
Страница:
<< 173 174 175 176
177 178 179 >> [Всего задач: 2247]