ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На клетчатой доске 5×5 расставили максимальное число шахматных коней так, чтобы они не били друг друга.
Докажите, что такая расстановка единственна.

 

Вниз   Решение


Найдите площадь полной поверхности правильного тетраэдра с ребром, равным a .

ВверхВниз   Решение


При каких натуральных n выполняется неравенство  2n ≥ n³?

ВверхВниз   Решение


Вася задумал восемь клеток шахматной доски, никакие две из которых не лежат в одной строке или в одном столбце. За ход Петя выставляет на доску восемь ладей, не бьющих друг друга, а затем Вася указывает все ладьи, стоящие на задуманных клетках. Если количество ладей, указанных Васей на этом ходе, чётно (то есть 0, 2, 4, 6 или 8), то Петя выигрывает; иначе все фигуры снимаются с доски и Петя делает следующий ход. За какое наименьшее число ходов Петя сможет гарантированно выиграть?

ВверхВниз   Решение


В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.

ВверхВниз   Решение


Постройте треугольник ABC, зная три точки P, Q, R, в которых высота, биссектриса и медиана, проведенные из вершины C, пересекают описанную окружность.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 59]      



Задача 57216

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 4
Классы: 8,9

Потроить треугольник по высоте к стороне a ha, медиане к стороне a ma и высоте к стороне b hb.
Прислать комментарий     Решение


Задача 57217

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 4
Классы: 8,9

Потроить треугольник по сторонам a и b и медиане к стороне c mc.
Прислать комментарий     Решение


Задача 57226

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 4
Классы: 8,9

Постройте треугольник ABC, зная три точки P, Q, R, в которых высота, биссектриса и медиана, проведенные из вершины C, пересекают описанную окружность.
Прислать комментарий     Решение


Задача 57227

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 4
Классы: 8,9

Постройте треугольник ABC, зная положение трех точек  A1, B1, C1, являющихся центрами вневписанных окружностей треугольника ABC.
Прислать комментарий     Решение


Задача 66649

Темы:   [ Построение треугольников по различным точкам ]
[ Точка Нагеля. Прямая Нагеля ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Кадыров К.

Постройте треугольник по точке Нагеля, вершине $B$ и основанию высоты, проведенной из этой вершины.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .