Версия для печати
Убрать все задачи
Дана возрастающая последовательность положительных чисел $...< a_{-2} < a_{-1} < a_{0} < a_{1} < a_{2} < ...,$ бесконечная в обе стороны. Пусть $b_k$ – наименьшее целое число со свойством: отношение суммы любых $k$ подряд идущих членов данной последовательности к наибольшему из этих $k$ членов не превышает $b_k$. Докажите, что последовательность $b_{1}, b_{2}, b_{3}$, ...
либо совпадает с натуральным рядом 1, 2, 3, ..., либо с некоторого момента постоянна.
Решение
Точки
A и
B лежат на диаметре данной окружности.
Проведите через них две равные хорды с общим концом.
Решение