ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
>>
Симметрия и построения
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан острый угол MON и точки A и B внутри его. Найдите на стороне OM точку X так, чтобы треугольник XYZ, где Y и Z — точки пересечения прямых XA и XB с ON, был равнобедренным: XY = XZ. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
Дана прямая MN и две точки A и B по одну сторону от нее. Постройте на прямой MN точку X так, что ∠AXM = 2∠BXN.
Даны прямые l1, l2 и l3, пересекающиеся в одной точке. С помощью циркуля и линейки постройте треугольник ABC, для которого данные прямые были бы серединными перпендикулярами к его сторонам.
С помощью циркуля и линейки постройте треугольник ABC, если даны его вершины A и B, прямая l, на которой лежит вершина C, и разность углов A - B = .
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|