ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите остаток R(x) от деления многочлена  xn + x + 2  на  x² – 1.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



Задача 61020

Темы:   [ Производная и кратные корни ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 3+
Классы: 10,11

Постройте многочлен R(x) из задачи 61019, если:
  а)  P(x) = x6 – 6x4 – 4x3 + 9x2 + 12x + 4;
  б)  P(x) = x5 + x4 – 2x3 – 2x2 + x + 1.

Прислать комментарий     Решение

Задача 98055

Темы:   [ Свойства коэффициентов многочлена ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Фомин Д.

Докажите, что при любом натуральном n найдётся ненулевой многочлен P(x) с коэффициентами, равными 0, –1, 1, степени не больше 2n, который делится на
(x – 1)n.

Прислать комментарий     Решение

Задача 60978

Темы:   [ Теорема Безу. Разложение на множители ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4-
Классы: 8,9,10,11

Найдите остаток R(x) от деления многочлена  xn + x + 2  на  x² – 1.

Прислать комментарий     Решение

Задача 60989

 [Алгоритм Евклида для многочленов]
Темы:   [ Алгоритм Евклида ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4-
Классы: 8,9,10,11

Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно и P(x) не делится на Q(x). Докажите, что при некотором  s ≥ 1  существуют такие многочлены  A0(x), A1(x), ..., As(x)  и  R1(x), ..., Rs(x),  что  degQ(x) > degR1(x) > degR2(x) > ... > degRs(x) ≥ 0,
    P(x) = Q(x)A0(x) + R1(x),
    Q(x) = R1(x)A1(x) + R2(x),
    R1(x) = R2(x)A2(x) + R3(x),
      ...
    Rs–2(x) = Rs–1(x)As–1(x) + Rs(x),
    Rs–1(x) = Rs(x)As(x)
и  (P(x), Q(x)) = Rs(x).

Прислать комментарий     Решение

Задача 79345

Темы:   [ Рекуррентные соотношения ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4
Классы: 10,11

Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство  P(x) > x.  Определим последовательность {bn} следующим образом:  b1 = 1,  bk+1 = P(bk)  для  k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что  P(x) = x + 1.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .