ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Последовательность чисел {an} задана условиями
a1 = 1, an + 1 = + (n 1).
Докажите,
что
а) последовательность {an} ограничена; б) | a1000 - 2| < . Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]
x1 - a, xn + 1 = .
Докажите, что
последовательность {xn} монотонна и ограничена. Найдите ее
предел.
an + 1 - = 0.
Докажите, что
an = 0.
a1 = 1, an + 1 = + (n 1).
Докажите,
что
а) последовательность {an} ограничена; б) | a1000 - 2| < .
Дана возрастающая последовательность положительных чисел $...< a_{-2} < a_{-1} < a_{0} < a_{1} < a_{2} < ...,$ бесконечная в обе стороны. Пусть $b_k$ – наименьшее целое число со свойством: отношение суммы любых $k$ подряд идущих членов данной последовательности к наибольшему из этих $k$ членов не превышает $b_k$. Докажите, что последовательность $b_{1}, b_{2}, b_{3}$, ... либо совпадает с натуральным рядом 1, 2, 3, ..., либо с некоторого момента постоянна.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|