ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости отмечена точка M, не лежащая на осях координат. По оси ординат движется точка Q, а по оси абсцисс точка P так, что угол PMQ всегда остаётся прямым. Найдите геометрическое место точек N, симметричных M относительно PQ. Решение |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 563]
а) допустимый четырехугольник, который после n<5 операций становится равным исходному; б) такое число n0, что любой допустимый четырехугольник после n=n0 операций становится равным исходному?
Прямая, проходящая через точку M основания AB равнобедренного треугольника ABC, пересекает прямые AC и BC в точках A1 и B1 соответственно. Докажите, что = .
Прямые l и m пересекаются в точке O, прямые l1 и m1 получены из прямых l и m поворотом на некоторый угол относительно точки O. Докажите, что композиция симметрий относительно l и m и композиция симметрий относительно l1 и m1 — одно и то же преобразование.
Серединный перпендикуляр к стороне AB треугольника ABC пересекает сторону AC в точке K, причём точка K делит ломаную ACB на две части равной длины. Докажите, что треугольник ABC – равнобедренный.
На плоскости отмечена точка M, не лежащая на осях координат. По оси ординат движется точка Q, а по оси абсцисс точка P так, что угол PMQ всегда остаётся прямым. Найдите геометрическое место точек N, симметричных M относительно PQ.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 563] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|