ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки K и L делят медиану AM треугольника ABC на три равные части, точка K лежит между L и . Отметили точку P так, что треугольники KPL и ABC подобны, причём P и C лежат в одной полуплоскости относительно прямой AM. Докажите, что P лежит на прямой AC.

   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 66708

Темы:   [ Композиция преобразований плоскости ]
[ Ортогональная проекция (прочее) ]
[ Кривые второго порядка ]
Сложность: 4
Классы: 8,9,10,11

Правильный треугольник, лежащий в плоскости $\alpha$, ортогонально спроектировали на непараллельную ей плоскость $\beta$, полученный треугольник ортогонально спроектировали на плоскость $\gamma$ и получили снова правильный треугольник. Докажите, что
  а) угол между плоскостями $\alpha$ и $\beta$ равен углу между плоскостями $\beta$ и $\gamma$;
  б) плоскость $\beta$ пересекает плоскости $\alpha$ и $\gamma$ по перпендикулярным друг другу прямым.

Прислать комментарий     Решение

Задача 66950

Темы:   [ Вневписанные окружности ]
[ Проективные преобразования плоскости ]
[ Композиция преобразований плоскости ]
Сложность: 5
Классы: 9,10,11

Автор: Agarwal P.

Пусть $\gamma_A$, $\gamma_B$, $\gamma_C$ – вневписанные окружности треугольника $ABC$, касающиеся сторон $BC$, $CA$, $AB$ соответственно. Обозначим через $l_A$ общую внешнюю касательную окружностей $\gamma_B$ и $\gamma_C$, отличную от $BC$. Аналогично определим $l_B$, $l_C$. Из точки $P$, лежащей на $l_A$, проведем отличную от $l_A$ касательную к $\gamma_B$ и найдем точку $X$ ее пересечения с $l_C$. Аналогично найдем точку $Y$ пересечения касательной из $P$ к $\gamma_C$ с $l_B$. Докажите, что прямая $XY$ касается $\gamma_A$.
Прислать комментарий     Решение


Задача 65156

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношения линейных элементов подобных треугольников ]
[ Гомотетия помогает решить задачу ]
[ Композиция преобразований плоскости ]
Сложность: 4-
Классы: 9,10,11

Точки K и L делят медиану AM треугольника ABC на три равные части, точка K лежит между L и . Отметили точку P так, что треугольники KPL и ABC подобны, причём P и C лежат в одной полуплоскости относительно прямой AM. Докажите, что P лежит на прямой AC.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .