Страница: 1
2 3 4 5 6 7 >> [Всего задач: 77]
|
|
Сложность: 2+ Классы: 10,11
|
Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов?
|
|
Сложность: 2+ Классы: 9,10,11
|
В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m?
Какое наибольшее число острых углов может встретиться в выпуклом многоугольнике?
|
|
Сложность: 3- Классы: 8,9,10
|
Пусть
α ,
β ,
γ и
δ — градусные
меры углов некоторого выпуклого четырехугольника. Всегда ли из
этих четырех чисел можно выбрать три числа так, чтобы они выражали
длины сторон некоторого треугольника (например, в метрах)?
|
|
Сложность: 3- Классы: 7,8,9
|
Существует ли выпуклый 1978-угольник, у которого все углы выражаются целым числом градусов?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 77]