ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если
  а) a, b и c – положительные числа, то  

  б) a, b, c и d – положительные числа,  

  в) a1, ..., an – положительные числа  (n > 1),  то  

   Решение

Задачи

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 590]      



Задача 66704

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Числовые неравенства. Сравнения чисел. ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10,11

Автор: Дидин М.

На улице дома стоят друг напротив друга, всего 50 пар. На правой стороне улицы расположены дома с чётными натуральными номерами, на левой – с нечётными натуральными номерами, номера возрастают от начала улицы к концу на каждой стороне, но идут не обязательно подряд (возможны пропуски). Для каждого дома на правой стороне улицы нашли разность между его номером и номером дома напротив, и оказалось, что все найденные числа различны. Наибольший номер дома на улице равен $n$. Найдите наименьшее возможное значение $n$.

Прислать комментарий     Решение

Задача 66837

Темы:   [ Числовые последовательности (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4
Классы: 8,9,10,11

Дана возрастающая последовательность положительных чисел  $...< a_{-2} < a_{-1} < a_{0} < a_{1} < a_{2} < ...,$  бесконечная в обе стороны. Пусть $b_k$ – наименьшее целое число со свойством: отношение суммы любых $k$ подряд идущих членов данной последовательности к наибольшему из этих $k$ членов не превышает $b_k$. Докажите, что последовательность $b_{1}, b_{2}, b_{3}$, ... либо совпадает с натуральным рядом 1, 2, 3, ..., либо с некоторого момента постоянна.

Прислать комментарий     Решение

Задача 67053

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Дидин М.

Докажите для любых натуральных чисел $a_1, a_2, ..., a_n$ неравенство  $\bigg\lfloor\frac{a_1^2}{a_2}\bigg\rfloor + \bigg\lfloor\frac{a_2^2}{a_3}\bigg\rfloor + ... + \bigg\lfloor\frac{a_n^2}{a_1}\bigg\rfloor \geqslant a_1 + a_2 + ... +a_n$.  ([$x$] – целая часть числа $x$.)

Прислать комментарий     Решение

Задача 67140

Темы:   [ Квадратный трехчлен (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4
Классы: 9,10,11

Таня взяла список из ста чисел 1, 2, 3, . . . , 100 и вычеркнула несколько из них. Оказалось, что какие бы два числа из оставшихся Таня ни взяла в качестве $a$ и $b$, уравнение $x^2 + ax + b=0$ имеет хотя бы один действительный корень. Какое наибольшее количество чисел могло остаться не вычеркнутым?
Прислать комментарий     Решение


Задача 73717

Темы:   [ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Докажите, что если
  а) a, b и c – положительные числа, то  

  б) a, b, c и d – положительные числа,  

  в) a1, ..., an – положительные числа  (n > 1),  то  

Прислать комментарий     Решение

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .