ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах параллелограмма вне его построены квадраты. Доказать, что их центры лежат в вершинах некоторого квадрата.

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



Задача 116449

Темы:   [ Параллелограммы (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Окружность проходит через вершины В и D параллелограмма АВСD и пересекает его стороны АВ, ВС, СD и DA в точках M, N, P и K соответственно. Докажите, что  MK || NP.

Прислать комментарий     Решение

Задача 66468

Тема:   [ Параллелограммы (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Внутри параллелограмма ABCD отмечена точка K. Точка M – середина BC, точка P – середина KM. Докажите, что если ∠APB = ∠CPD = 90°, то AK = DK.
Прислать комментарий     Решение


Задача 76484

Тема:   [ Параллелограммы (прочее) ]
Сложность: 3
Классы: 10,11

На сторонах параллелограмма вне его построены квадраты. Доказать, что их центры лежат в вершинах некоторого квадрата.
Прислать комментарий     Решение


Задача 76512

Темы:   [ Параллелограммы (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Сторона AD параллелограмма ABCD разделена на n равных частей. Первая точка деления P соединена с вершиной B.
Доказать, что прямая BP отсекает на диагонали AC часть AQ, которая равна 1/n+1 части диагонали:  AQ = AC/n+1.

Прислать комментарий     Решение

Задача 55131

Темы:   [ Параллелограммы (прочее) ]
[ Отношение площадей треугольников с общим углом ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .