Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 153]
Машина ездит по кольцевой трассе по часовой стрелке. В полдень в две разных точки трассы встали два наблюдателя. К какому-то моменту машина проехала возле каждого наблюдателя не менее 30 раз. Первый наблюдатель заметил, что машина проезжала каждый следующий круг ровно на секунду быстрее, чем предыдущий. Второй заметил, что машина проезжала каждый следующий круг ровно на секунду медленнее, чем предыдущий. Докажите, что прошло не менее полутора часов.
|
|
Сложность: 4+ Классы: 8,9,10
|
Три велосипедиста ездят по кольцевой дороге радиуса 1 км против часовой стрелки с постоянными различными скоростями.
Верно ли, что, если они будут кататься достаточно долго, то найдётся момент, когда расстояние между каждыми двумя из них будет больше 1 км?
|
|
Сложность: 4+ Классы: 10,11
|
За некоторое время мальчик проехал на велосипеде целое число раз по периметру квадратной школы в одном направлении с постоянной по величине скоростью 10 км/ч. В это же время по периметру школы прогуливался его папа со скоростью 5 км/ч, при этом он мог менять направление движения. Папа видел мальчика в те и только те моменты, когда они находились на одной стороне школы. Мог ли папа видеть мальчика больше половины указанного времени?
|
|
Сложность: 4+ Классы: 8,9,10
|
По аллее длиной 100 метров идут три человека со скоростями 1, 2 и 3 км/ч.
Дойдя до конца аллеи, каждый из них поворачивает и идёт назад с той же
скоростью. Доказать, что найдётся отрезок времени в 1 минуту, когда все трое
будут идти в одном направлении.
|
|
Сложность: 4+ Классы: 8,9,10
|
Путь от платформы A до платформы B электропоезд прошел за X минут (0 < X < 60). Найдите X, если известно, что как в момент отправления от A, так и в момент прибытия в B угол между часовой и минутной стрелками равнялся X градусам.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 153]