ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В классе организуется турнир по перетягиванию каната. В турнире ровно по одному разу должны участвовать всевозможные команды, которые можно составить из учащихся этого класса (кроме команды всего класса). Доказать, что каждая команда учащихся будет соревноваться с командой всех остальных учащихся класса.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 [Всего задач: 110]      



Задача 31373

Темы:   [ Ориентированные графы ]
[ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
Сложность: 4-
Классы: 6,7,8,9

12 шахматистов сыграли турнир в один круг. Потом каждый из них написал 12 списков. В первом только он, в (k+1)-м – те, кто были в k-м и те, у кого они выиграли. Оказалось, что у каждого шахматиста 12-й список отличается от 11-го. Сколько было ничьих?

Прислать комментарий     Решение

Задача 78303

Темы:   [ Индукция (прочее) ]
[ Турниры и турнирные таблицы ]
[ Ориентированные графы ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В шахматном турнире каждый участник сыграл с каждым из остальных одну партию.
Доказать, что участников можно так занумеровать, что окажется, что ни один участник не проиграл непосредственно за ним следующему.

Прислать комментарий     Решение

Задача 98100

Темы:   [ Индукция (прочее) ]
[ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
[ Отношение порядка ]
Сложность: 4
Классы: 8,9,10

В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

Прислать комментарий     Решение

Задача 35003

Темы:   [ Обыкновенные дроби ]
[ Задачи на проценты и отношения ]
[ Турниры и турнирные таблицы ]
Сложность: 3
Классы: 6,7,8

В турнире по шахматам участвуют мастера спорта и кандидаты в мастера. Какое наименьшее число людей может участвовать в этом турнире, если известно, что среди них мастеров меньше половины, но больше 45%.

Прислать комментарий     Решение

Задача 79512

Темы:   [ Объединение, пересечение и разность множеств ]
[ Разбиения на пары и группы; биекции ]
[ Турниры и турнирные таблицы ]
Сложность: 4-
Классы: 7,8,9

В классе организуется турнир по перетягиванию каната. В турнире ровно по одному разу должны участвовать всевозможные команды, которые можно составить из учащихся этого класса (кроме команды всего класса). Доказать, что каждая команда учащихся будет соревноваться с командой всех остальных учащихся класса.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .