ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Составьте из прямоугольников 1х1, 1х2, 1х3,…,1х13 прямоугольник, каждая сторона которого больше 1.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 501]      



Задача 79660

Темы:   [ Замощения костями домино и плитками ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 6,7

Составьте из прямоугольников 1х1, 1х2, 1х3,…,1х13 прямоугольник, каждая сторона которого больше 1.
Прислать комментарий     Решение


Задача 54189

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Найдите диагональ прямоугольника со сторонами 5 и 12.

Прислать комментарий     Решение

Задача 64558

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Диагональ BD параллелограмма ABCD образует углы по 45° со стороной BC и высотой, проведённой из вершины D к стороне АВ.
Найдите угол АСD.

Прислать комментарий     Решение

Задача 77939

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Ромбы. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Если все 6 граней параллелепипеда — равные между собой параллелограммы, то они суть ромбы. Докажите.
Прислать комментарий     Решение


Задача 77979

Темы:   [ Описанные четырехугольники ]
[ Ромбы. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Около окружности описан четырёхугольник. Его диагонали пересекаются в центре этой окружности. Докажите, что этот четырёхугольник — ромб.
Прислать комментарий     Решение


Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .