ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На какое максимальное число частей могут разбить координатную плоскость xOy графики 100 квадратных трехчлёнов вида
y = anx² + bnx + cn  (n = 1, 2, ..., 100)?

   Решение

Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 411]      



Задача 65130

Темы:   [ Системы линейных уравнений ]
[ Доказательство от противного ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 10,11

По кругу расставлено 300 положительных чисел. Могло ли случиться так, что каждое из этих чисел, кроме одного, равно разности своих соседей?

Прислать комментарий     Решение

Задача 97920

Темы:   [ Степень вершины ]
[ Принцип крайнего (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 8,9,10,11

На окружности имеется 21 точка.
Докажите, что среди дуг, имеющих концами эти точки, найдётся не меньше ста таких, угловая мера которых не превышает 120°.

Прислать комментарий     Решение

Задача 98045

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
[ Разные задачи на разрезания ]
[ Индукция в геометрии ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 4-
Классы: 8,9,10,11

На какое максимальное число частей могут разбить координатную плоскость xOy графики 100 квадратных трехчлёнов вида
y = anx² + bnx + cn  (n = 1, 2, ..., 100)?

Прислать комментарий     Решение

Задача 98616

Темы:   [ Турниры и турнирные таблицы ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9

В однокруговом турнире участвовали 15 команд.
  а) Докажите, что хотя бы в одной игре встретились команды, которые перед этой игрой участвовали в сумме в нечётном числе игр этого турнира.
  б) Могла ли такая игра быть единственной?

Прислать комментарий     Решение

Задача 116395

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Арифметика остатков (прочее) ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 10,11

  Назовём натуральное число хорошим, если все его цифры ненулевые. Хорошее число назовём особым, если в нём хотя бы k разрядов и цифры идут в порядке строгого возрастания (слева направо).
  Пусть имеется некое хорошее число. За ход разрешается приписать с любого края или вписать между любыми его двумя цифрами особое число или же, наоборот, стереть в его записи особое число. При каком наибольшем k можно из каждого хорошего числа получить любое другое хорошее число с помощью таких ходов?

Прислать комментарий     Решение

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 411]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .