Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 56]
|
|
Сложность: 3+ Классы: 6,7,8
|
Двое играют в крестики-нолики на доске 10×10 по следующим правилам. Сначала они заполняют крестиками и ноликами всю доску, ставя их по очереди (начинающий игру ставит крестики, его партнер – нолики). Затем подсчитываются два числа: K – число пятерок подряд стоящих крестиков и H – число пятерок подряд стоящих ноликов. (Считаются пятерки, стоящие по горизонтали, по вертикали и параллельно диагонали; если подряд стоят шесть крестиков, то это даёт две пятерки, если семь, то три и т. д.) Число K – H считается выигрышем первого игрока (проигрышем второго).
а) Существует ли у первого игрока беспроигрышная стратегия?
б) Существует ли у него выигрышная стратегия?
|
|
Сложность: 3+ Классы: 7,8,9
|
Игра происходит на квадрате клетчатой бумаги 9×9. Играют двое, ходят по
очереди. Начинающий игру ставит в свободные клетки крестики, его партнер –
нолики. Когда все клетки заполнены, подсчитывается количество К строк и столбцов,
в которых крестиков больше, чем ноликов,и количество Н строк и столбцов, в которых ноликов больше, чем крестиков. Разность В = К – Н считается выигрышем игрока, который начинает. Найдите такое значение B, что
1) первый игрок может обеспечить себе выигрыш не меньше B, как бы ни играл
второй игрок;
2) второй игрок всегда может добиться того, что первый получит выигрыш не
больше B, как бы тот ни играл.
На столе лежат 2002 карточки с числами 1, 2, 3,... , 2002. Двое играющих берут по одной карточке по очереди. После того, как будут взяты все карточки, выигравшим считается тот, у кого больше последняя цифра суммы чисел на взятых карточках. Кто из играющих может всегда выигрывать, как бы ни играл противник, и как он должен при этом играть?
У ромашки а) 12 лепестков; б) 11 лепестков. За ход
разрешается оторвать либо один лепесток, либо два рядом растущих
лепестка. Проигрывает тот, кто не может сделать хода.
|
|
Сложность: 4- Классы: 7,8,9
|
Двое играют на доске
19×94 клеток. Каждый по очереди отмечает квадрат
по линиям сетки (любого возможного размера) и закрашивает его. Выигрывает
тот, кто закрасит последнюю клетку. Дважды закрашивать клетки нельзя. Кто
выиграет при правильной игре и как надо играть?
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 56]