ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

По окружности написаны 12 чисел а1, а2, ..., а12. Если их списать, начиная с номера k, то получится вектор xk:

xk=(аk, аk+1, ..., аk+11), где под а13 понимается а1, под а14 понимается а2 и т.д. Вектор xk считается меньше вектора xp, если в первой же неравной паре будет аk+jp+j(j=0,1,...). Найти такое k, чтобы вектор xk был минимален.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 277]      



Задача 98791

 [Равные элементы]
Тема:   [ Многомерные массивы ]
Сложность: 2

Задан целочисленный массив А [1:m, 1:n]. Каждая строка массива упорядочена по <=,т.е. А [j, 1]<=А [j, 2]<=... при всех j=1,...m. Найти и напечатать число, встречающееся во всех строках, и напечатать надпись НЕТ, если такого числа не окажется.

Прислать комментарий     Решение

Задача 98793

 [Тетраэдры]
Тема:   [ Прочие задачи на сообразительность ]
Сложность: 2

На гранях двух разных правильных тетраэдров M и N написаны числа M1, M2, M3, M4 и N1, N2, N3, N4 в порядке, указанном на рис.1.3. Можно ли совместить тетраэдры так, чтобы на совпавших гранях оказались написаны одинаковые числа? Напечатать ДА или НЕТ.

Прислать комментарий     Решение

Задача 98794

 [Мода]
Тема:   [ Сортировка ]
Сложность: 2

В целочисленном массиве А [1:n] найти число, повторяющееся максимальное количество раз. Если таких чисел несколько, то одно из них.

Прислать комментарий     Решение

Задача 98803

 [Барабан]
Тема:   [ Прочие задачи на сообразительность ]
Сложность: 2

По окружности написаны 12 чисел а1, а2, ..., а12. Если их списать, начиная с номера k, то получится вектор xk:

xk=(аk, аk+1, ..., аk+11), где под а13 понимается а1, под а14 понимается а2 и т.д. Вектор xk считается меньше вектора xp, если в первой же неравной паре будет аk+jp+j(j=0,1,...). Найти такое k, чтобы вектор xk был минимален.

Прислать комментарий     Решение

Задача 98805

 [Центральное селение]
Тема:   [ Многомерные массивы ]
Сложность: 2

Имеется k селений. Если в селении i расположить пункт скорой помощи, то поездка по вызову в селение j займет время

А[i, i] + A[i, j] (1<=i, j<=k, i <> j).

Найти номер селения j, от которого поездка в самое удаленное (по времени) селение занимала бы минимальное время. Массив А[i, j]>0 и элемент А[i, j] может быть не равен элементу А[j, i].
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 277]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .