Страница:
<< 72 73 74 75
76 77 78 >> [Всего задач: 418]
|
|
Сложность: 4- Классы: 7,8,9,10
|
Совершенное число, большее 6, делится на 3. Докажите, что оно делится
на 9.
|
|
Сложность: 4- Классы: 7,8,9
|
Играют двое. В начале игры есть одна палочка. Первый игрок ломает эту палочку на две части. И так игроки по очереди ломают на две части любую палочку из имеющихся к данному моменту. Если, сломав палочку, игрок может сложить из всех имеющихся палочек один или несколько отдельных треугольников (каждый – ровно из трёх палочек), то он выиграл. Кто из игроков (первый или второй) может обеспечить себе победу независимо от действий другого игрока?
|
|
Сложность: 4- Классы: 8,9,10
|
В клетках таблицы 10×10 произвольно расставлены натуральные числа от 1 до 100, каждое по одному разу. За один ход разрешается поменять местами любые два числа. Докажите, что за 35 ходов можно добиться того, чтобы сумма каждых двух чисел, стоящих в клетках с общей стороной, была составной.
|
|
Сложность: 4- Классы: 6,7,8,9,10
|
а) Скупой рыцарь хранит золотые монеты в шести сундуках. Однажды,
пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну в эти два сундука. Еще он заметил, что если открыть любые 3, 4 или 5 сундуков, то тоже можно переложить лежащие в них монеты таким образом, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга так и не узнал, можно ли разложить все монеты поровну по всем шести сундукам. Можно ли, не заглядывая в заветные
сундуки, дать точный ответ на этот вопрос?
б) А если сундуков было восемь, а Скупой рыцарь мог разложить поровну
монеты, лежащие в любых 2, 3, 4, 5, 6 или 7 сундуках?
|
|
Сложность: 4- Классы: 6,7,8,9
|
Скупой рыцарь хранит золотые монеты в 77 сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну по этим двум сундукам. Потом он заметил, что если открыть любые 3, или любые 4, ..., или любые 76 сундуков, то тоже можно так переложить лежащие в них монеты, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга не успел проверить, можно ли разложить все
монеты поровну по всем 77 сундукам. Можно ли, не заглядывая в сундуки, дать точный ответ на этот вопрос?
Страница:
<< 72 73 74 75
76 77 78 >> [Всего задач: 418]