Страница:
<< 76 77 78 79
80 81 82 >> [Всего задач: 418]
|
|
Сложность: 3 Классы: 6,7,8
|
Грани некоторого многогранника раскрашены в два цвета так, что соседние грани имеют разные цвета. Известно, что все грани, кроме одной, имеют число рёбер, кратное 3. Доказать, что и эта одна грань имеет кратное 3 число рёбер.
|
|
Сложность: 3 Классы: 8,9,10
|
Докажите, что если p и q – два простых числа, причём q = p + 2, то pq + qp делится на p + q.
|
|
Сложность: 3+ Классы: 8,9,10
|
При каких целых $n$ число
а) $\frac{n^4+3}{n^2+n+1}$; б) $\frac{n^3+n+1}{n^2-n+1}$ также будет целым?
Миша заметил, что на электронном табло, показывающем курс доллара к рублю (4 цифры, разделенные десятичной запятой), горят те же самые четыре различные цифры, что и месяц назад, но в другом порядке. При этом курс вырос ровно на 20%. Приведите пример того, как такое могло произойти.
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите наименьшее натуральное число, десятичная запись квадрата которого оканчивается на 2016.
Страница:
<< 76 77 78 79
80 81 82 >> [Всего задач: 418]