Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 694]
|
|
Сложность: 3+ Классы: 9,10,11
|
Последовательность f(n) (n=1,2,...), состоящая из натуральных
чисел, такова, что f(f(n))=f(n+1)+f(n) для всех натуральных n.
Докажите, что все члены этой последовательности различны.
|
|
Сложность: 3+ Классы: 7,8,9
|
В средней клетке полоски 1×2005 стоит фишка.
Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую
сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д.
(
k-й сдвиг происходит на
2
k-1 клеток).
Тот, кто не может сделать очередной ход, проигрывает.
Кто может выиграть независимо от игры соперника?
|
|
Сложность: 3+ Классы: 9,10,11
|
Вычислите сумму:
|
|
Сложность: 3+ Классы: 8,9,10
|
Найдите первые 17 знаков в десятичной
записи у чисел:
а)

+

+...+

;
б)

+

;
в)

-

.
|
|
Сложность: 3+ Классы: 8,9,10
|
Из натуральных чисел составляются последовательности, в которых каждое
последующее число больше квадрата предыдущего, а последнее число в
последовательности равно 1969 (последовательности могут иметь разную длину).
Доказать, что различных последовательностей такого вида меньше чем 1969.
Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 694]