ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 191]      



Задача 109950

Темы:   [ Формула Герона ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Арифметическая прогрессия ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Губин Я.

Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя последовательными членами арифметической прогрессии. Найдите все такие треугольники.
Прислать комментарий     Решение


Задача 107859

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Покрытия ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 7,8,9

Автор: Агеев С.М.

Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?
Прислать комментарий     Решение


Задача 60554

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Геометрическая прогрессия ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4-
Классы: 8,9,10

Докажите, что число p входит в разложение n! с показателем, не превосходящим  

Прислать комментарий     Решение

Задача 60708

Темы:   [ Арифметика остатков (прочее) ]
[ Малая теорема Ферма ]
[ Геометрическая прогрессия ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 9,10,11

Докажите справедливость следующих сравнений:
  а)  1 + 2 + 3 + ... + 12 ≡ 1 + 2 + 22 + ... + 211 (mod 13);
  б)  1² + 2² + 3² + ... + 12² ≡ 1 + 4 + 42 + ... + 411 (mod 13).

Прислать комментарий     Решение

Задача 65430

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 9,10,11

Василиса Премудрая расставляет все натуральные числа от 1 до n², где  n > 1,  в клетки таблицы размером n×n. Кандидат в женихи должен вычеркнуть строку и столбец так, чтобы сумма всех оставшихся чисел была чётной. Всегда ли выполнимо такое задание?

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 191]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .