ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 383]
Докажите, что на рёбрах связного графа можно так расставить стрелки, чтобы из некоторой вершины можно было добраться по стрелкам до любой другой.
В некоторой стране из столицы выходит 89 дорог, из города Дальний – одна дорога, из остальных 1988 городов – по 20 дорог.
В графе 100 вершин, причём степень каждой из них не меньше 50. Доказать, что граф связен.
Грани некоторого многогранника раскрашены в два цвета так, что соседние грани имеют разные цвета. Известно, что все грани, кроме одной, имеют число рёбер, кратное 3. Доказать, что и эта одна грань имеет кратное 3 число рёбер.
а) В группе из четырёх человек, говорящих на разных языках, любые трое могут общаться (возможно, один переводит двум другим).
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 383] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|