ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 12601]      



Задача 35039

Тема:   [ Раскраски ]
Сложность: 2+
Классы: 7,8,9

Деревянный куб покрасили снаружи белой краской, каждое его ребро разделили на 5 равных частей, после чего куб распилили так, что получились маленькие кубики, у которых ребро в 5 раз меньше, чем у исходного куба. Сколько получилось маленьких кубиков, у которых окрашена хотя бы одна грань?
Прислать комментарий     Решение


Задача 35121

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 2+
Классы: 9,10

Существует ли а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые?
Прислать комментарий     Решение


Задача 35433

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 5,6,7

Можно ли в квадрате 10*10 расставить 12 кораблей 1*4 (для игры типа "морской бой") так, чтобы корабли не соприкасались друг с другом (даже вершинами)?
Прислать комментарий     Решение


Задача 35497

Тема:   [ Стереометрия (прочее) ]
Сложность: 2+
Классы: 10,11

Какое максимальное число плоскостей симметрии может иметь тетраэдр?
Прислать комментарий     Решение


Задача 35610

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 6,7,8

Можно ли квадратный лист бумаги размером 2*2 сложить так, чтобы его можно было разрезать на 4 квадрата 1*1 одним взмахом ножницами?
Прислать комментарий     Решение


Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .