ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 56937

Тема:   [ Прямая Симсона ]
Сложность: 5
Классы: 9

а) Из точки P описанной окружности треугольника ABC проведены прямые PA1, PB1 и PC1 под данным (ориентированным) углом $ \alpha$ к прямым BC, CA и AB соответственно (точки A1, B1 и C1 лежат на прямых BC, CA и AB). Докажите, что точки A1, B1 и C1 лежат на одной прямой.
б) Докажите, что при замене в определении прямой Симсона угла  90o на угол $ \alpha$ она повернется на угол  90o - $ \alpha$.
Прислать комментарий     Решение


Задача 56938

Тема:   [ Прямая Симсона ]
Сложность: 5
Классы: 9

а) Из точки P описанной окружности треугольника ABC опущены перпендикуляры PA1 и PB1 на прямые BC и AC. Докажите, что  PA . PA1 = 2Rd, где R — радиус описанной окружности, d — расстояние от точки P до прямой A1B1.
б) Пусть $ \alpha$ — угол между прямыми A1B1 и BC. Докажите, что  cos$ \alpha$ = PA/2R.
Прислать комментарий     Решение


Задача 56939

Тема:   [ Прямая Симсона ]
Сложность: 5
Классы: 9

Пусть A1 и B1 — проекции точки P описанной окружности треугольника ABC на прямые BC и AC. Докажите, что длина отрезка A1B1 равна длине проекции отрезка AB на прямую A1B1.
Прислать комментарий     Решение


Задача 56940

Тема:   [ Прямая Симсона ]
Сложность: 5
Классы: 9

На окружности фиксированы точки P и C; точки A и B перемещаются по окружности так, что угол ACB остается постоянным. Докажите, что прямые Симсона точки P относительно треугольников ABC касаются фиксированной окружности.
Прислать комментарий     Решение


Задача 56941

Тема:   [ Прямая Симсона ]
Сложность: 5
Классы: 9,10

Точка P движется по описанной окружности треугольника ABC. Докажите, что при этом прямая Симсона точки P относительно треугольника ABC поворачивается на угол, равный половине угловой величины дуги, пройденной точкой P.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .