ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 404]      



Задача 116101

 [Задача Люилье]
Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Формула Герона ]
Сложность: 4
Классы: 8,9

Пусть r — радиус вписанной окружности, а ra , rb и rc — радиусы вневписанных окружностей треугольника ABC , касающихся сторон BC=a , AC=b , AB=c соответственно; p — полупериметр треугольника ABC , S — его площадь. Докажите, что
                     а) = + + ; б) S = .
Прислать комментарий     Решение


Задача 52728

Темы:   [ Вневписанные окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Площадь треугольника ABC равна 2$ \sqrt{3}$ - 3, а угол BAC равен 60o. Радиус окружности, касающейся стороны BC и продолжения сторон AB и AC, равен 1. Найдите углы ABC и ACB данного треугольника.

Прислать комментарий     Решение


Задача 54934

Темы:   [ Неравенства с площадями ]
[ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9

В тупоугольном треугольнике наибольшая сторона равна 4, а наименьшая — 2. Может ли площадь треугольника быть больше 2$ \sqrt{3}$?

Прислать комментарий     Решение


Задача 54392

Темы:   [ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4+
Классы: 8,9

Биссектрисы углов B и C параллелограмма ABCD пересекаются в точке O. Найдите площадь параллелограмма, если $ \angle$A = 2 arcsin$ {\frac{2}{\sqrt{13}}}$, OA = 2$ \sqrt{10}$, OD = 5. (Найдите все решения).

Прислать комментарий     Решение


Задача 54393

Темы:   [ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4+
Классы: 8,9

Биссектрисы углов K и N параллелограмма KLMN пересекаются в точке Q. Найдите площадь параллелограмма, если $ \angle$K = 2 arcsin$ {\frac{2}{3}}$, QL = $ \sqrt{21}$, QM = 2$ \sqrt{6}$. (Найдите все решения).

Прислать комментарий     Решение


Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .