ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
>>
Композиции симметрий
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]
Докажите, что три прямые, симметричные относительно сторон треугольника прямой, проходящей через точку пересечения высот треугольника, пересекаются в одной точке.
Дана прямая l и точка O на ней. Докажите, что композиция поворота вокруг точки O на угол и симметрии относительно прямой l есть осевая симметрия относительно прямой, проходящей через точку O и составляющей с прямой l угол .
Докажите, что композиция симметрий относительно n параллельных прямых l1, l2, ..., ln есть: а) параллельный перенос, если n чётно; б) осевая симметрия, если n нечётно.
Докажите, что композиция симметрий относительно n параллельных прямых l1, l2, ..., ln есть: а) параллельный перенос, если n чётно; б) осевая симметрия, если n нечётно.
Вписанная окружность касается сторон треугольника ABC в точках A1, B1 и C1; точки A2, B2 и C2 симметричны этим точкам относительно биссектрис соответствующих углов треугольника. Докажите, что A2B2 || AB и прямые AA2, BB2 и CC2 пересекаются в одной точке.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|