Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 289]
|
|
Сложность: 3 Классы: 8,9,10,11
|
a, b, c – стороны треугольника. Докажите неравенство
|
|
Сложность: 3 Классы: 7,8,9
|
Пусть a, b, c – стороны треугольника. Докажите неравенство a³ + b³ + 3abc > c³.
В прямоугольник вписан четырёхугольник (на каждой стороне прямоугольника по
одной вершине четырёхугольника).
Докажите, что периметр четырёхугольника не меньше удвоенной диагонали прямоугольника.
На основании AC равнобедренного треугольника ABC выбрали точку D, а на продолжении AC за вершину C – точку E, причём AD = CE.
Докажите, что BD + BE > AB + BC.
|
|
Сложность: 3 Классы: 7,8,9
|
Диагонали AC и BD равнобедренной трапеции ABCD пересекаются в точке O; известно также, что в трапецию можно вписать окружность.
Докажите, что ∠BOC > 60°.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 289]