ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 330]      



Задача 65813

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
[ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC. Точки M1, M2, M3 – середины сторон AB, BC и AC, a точки H1, H2, H3 – основания высот, лежащие на тех же сторонах.
Докажите, что из отрезков H1M2, H2M3 и H3M1 можно построить треугольник.

Прислать комментарий     Решение

Задача 108666

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Точка D – середина стороны AC треугольника ABC. На стороне BC выбрана такая точка E, что  ∠BEA = ∠CED.  Найдите отношение  AE : DE.

Прислать комментарий     Решение

Задача 109066

Темы:   [ Параллельность прямых и плоскостей ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 10,11

Пусть A , B , C и D – четыре точки, не лежащие в одной плоскости. Докажите, что прямая AB параллельна плоскости, проходящей через середины отрезков AD , BD и CD .
Прислать комментарий     Решение


Задача 109067

Темы:   [ Параллельность прямых и плоскостей ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 10,11

Пусть A , B , C и D – четыре точки, не лежащие в одной плоскости. Докажите, что плоскость, проходящая через середины отрезков AD , BD и CD , параллельна плоскости ABC .
Прислать комментарий     Решение


Задача 109069

Темы:   [ Параллельность прямых и плоскостей ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 10,11

Пусть A , B , C и D – четыре точки в пространстве. Докажите, что середины отрезков AB , BC , CD и DA служат вершинами параллелограмма.
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .