ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 158]      



Задача 110431

Темы:   [ Площадь и ортогональная проекция ]
[ Углы между биссектрисами ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Основанием пирамиды SABC является прямоугольный треугольник ABC ( C – вершина прямого угла). Все боковые грани пирамиды наклонены к её основанию под одинаковым углом, равным arcsin . Найдите площадь боковой поверхности пирамиды, если SO – высота пирамиды, AO = 1 , BO = 3 .
Прислать комментарий     Решение


Задача 110432

Темы:   [ Площадь и ортогональная проекция ]
[ Углы между биссектрисами ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Угол наклона всех боковых граней пирамиды SABC к основанию одинаков и равен arctg . Основанием пирамиды является прямоугольный треугольник ABC ( ACB = 90o ); SO – высота пирамиды. Найдите боковую поверхность пирамиды, если OB = , а радиус вписанной в треугольник ABC окружности равен 1.
Прислать комментарий     Решение


Задача 110433

Темы:   [ Площадь и ортогональная проекция ]
[ Углы между биссектрисами ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Основанием пирамиды SABC является прямоугольный треугольник ABC ( C – вершина прямого угла), причём BC = 4 , OB = , а SO – высота пирамиды. Найдите боковую поверхность пирамиды SABC , если все её боковые грани одинаково наклонены к основанию и угол их наклона равен arcsin .
Прислать комментарий     Решение


Задача 110434

Темы:   [ Площадь и ортогональная проекция ]
[ Углы между биссектрисами ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Прямоугольный треугольник ABC является основанием пирамиды SABC , SO – высота пирамиды, C – вершина прямого угла треугольника ABC , OB = , COB = . Все боковые грани пирамиды одинаково наклонены к основанию пирамиды под углом, равным arctg . Найдите боковую поверхность пирамиды.
Прислать комментарий     Решение


Задача 110276

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Двугранный угол ]
Сложность: 4
Классы: 10,11

Все двугранные углы при основании пирамиды равны α , а углы, образуемые боковыми рёбрами с плоскостью основания, равны β . Известно, что tg α = k tg β . Сколько сторон имеет основание пирамиды, если k = 2 ? Какие значения может принимать величина k ?
Прислать комментарий     Решение


Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .