ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

В классе у Марии Ивановны прошёл ежегодный тест по английскому языку. Оказалось, что в обеих группах А и Б средний балл понизился по сравнению с прошлым годом (см. таблицу).

Мария Ивановна должна писать отчет, но знает, что директор школы будет недоволен, поскольку считает, что средний балл должен каждый год расти. Баллы менять нельзя, но Мария Ивановна может переводить учеников из одной группы в другую. Может ли она сделать так, что средний балл в каждой группе окажется выше, чем в прошлом году?

   Решение

Задача 110136
Темы:    [ Принцип крайнего (прочее) ]
[ Степень вершины ]
Сложность: 4-
Классы: 7,8,9,10
В корзину
Прислать комментарий

Условие

На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода.
Какое наибольшее число людей могло остаться в конце?


Решение

  Нетрудно проверить, что если все пришедшие, кроме двух человек A и B, были знакомы между собой, то в конце должны были остаться все, кроме A и B, то есть 98 человек.
  Докажем, что не могло остаться 99 человек. Ясно, что человек A, имевший изначально меньше всех знакомых (k), в некоторый момент уйдёт. Если больше никто не ушёл, то все остальные (кроме A) имели больше k знакомых до ухода A и меньше  k + 1  после его ухода. Но тогда A должен быть знаком со всеми остальными, то есть  k = 99,  что противоречит строгой минимальности k.


Ответ

98 человек.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2003
Этап
Вариант 4
Класс
Класс 9
задача
Номер 03.4.9.6
олимпиада
Название Всероссийская олимпиада по математике
год
Год 2003
Этап
Вариант 4
Класс
Класс 11
задача
Номер 03.4.11.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .