ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 103898
УсловиеВаня задумал простое трёхзначное число, все цифры которого различны. ПодсказкаВоспользуйтесь признаками делимости на 2, 5, 3. РешениеОчевидно, что последняя цифра больше 1. Трёхзначное простое число не может оканчиваться ни на чётную цифру (то есть на 0, 2, 4, 6 или 8), ни на цифру 5. Если последняя цифра 3 или 9, то сумма всех цифр числа, равная удвоенной последней цифре, делится на 3, а тогда само число делится на 3. Таким образом, осталась только цифра семь. ОтветНа 7. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|