ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 105068
Темы:    [ Гомотетия помогает решить задачу ]
[ Индукция в геометрии ]
[ Целочисленные решетки (прочее) ]
Сложность: 5-
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

На лугу, имеющем форму квадрата, имеется круглая лунка. По лугу прыгает кузнечик. Перед каждым прыжком он выбирает вершину и прыгает по направлению к ней. Длина прыжка равна половине расстояния до этой вершины.
Сможет ли кузнечик попасть в лунку?

Решение

Достаточно доказать следующее утверждение. Пусть каждая сторона квадрата имеет длину 1 и разделена на 2n равных частей (n > 0), а через точки деления проведены прямые, параллельные сторонам. Тогда кузнечик сможет попасть в любую из 4n полученных клеток.

При n=0 факт тривиален. Проведем индуктивный переход от n к n+1. Рассмотрим какую-то из клеток размера 4-n-1.Выберем самую близкую к ней вершину исходного квадрата и выполним гомотетию с центром в этой вершине и с коэффициентом 2. Тогда выбранная клетка перейдет в одну из клеток размера 4-n. По предположению индукции, кузнечик может в нее попасть. Если он прыгнет теперь на половину расстояния до указанной вершины, то он попадет в нужную клетку.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 62
Год 1999
вариант
Класс 11
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .