ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 105065

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10,11

a, b, c – стороны треугольника. Докажите неравенство  

Прислать комментарий     Решение

Задача 108153

Темы:   [ Перегруппировка площадей ]
[ Площади криволинейных фигур ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
[ Разные задачи на разрезания ]
Сложность: 4
Классы: 8,9

Плоская выпуклая фигура ограничена отрезками AB и AD и дугой BD некоторой окружности (рис.1). Постройте какую-нибудь прямую, которая делит пополам: а) периметр этой фигуры; б) её площадь.
Прислать комментарий     Решение


Задача 105069

Темы:   [ Обход графов ]
[ Раскраски ]
[ Процессы и операции ]
Сложность: 4+
Классы: 8,9,10,11

Раскраска вершин графа называется правильной, если вершины одного цвета не соединены ребром. Некоторый граф правильно раскрашен в k цветов, причём его нельзя правильно раскрасить в меньшее число цветов. Докажите, что в этом графе существует путь, вдоль которого встречаются вершины всех k цветов ровно по одному разу.

Прислать комментарий     Решение

Задача 105068

Темы:   [ Гомотетия помогает решить задачу ]
[ Индукция в геометрии ]
[ Целочисленные решетки (прочее) ]
Сложность: 5-
Классы: 9,10,11

На лугу, имеющем форму квадрата, имеется круглая лунка. По лугу прыгает кузнечик. Перед каждым прыжком он выбирает вершину и прыгает по направлению к ней. Длина прыжка равна половине расстояния до этой вершины.
Сможет ли кузнечик попасть в лунку?
Прислать комментарий     Решение


Задача 105070

Темы:   [ Уравнения в целых числах ]
[ Треугольник Паскаля и бином Ньютона ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 5-
Классы: 9,10,11

Решите в натуральных числах уравнение  (1 + nk)l = 1 + nm,  где  l > 1.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .