Страница: 1
2 >> [Всего задач: 7]
|
|
Сложность: 3 Классы: 8,9,10,11
|
a, b, c – стороны треугольника. Докажите неравенство
Плоская выпуклая фигура ограничена отрезками
AB и
AD и дугой
BD некоторой окружности
(рис.1). Постройте какую-нибудь прямую, которая
делит пополам: а) периметр этой фигуры;
б) её площадь.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Раскраска вершин графа называется правильной, если вершины одного цвета не соединены ребром. Некоторый граф правильно раскрашен в k цветов, причём его нельзя правильно раскрасить в меньшее число цветов. Докажите, что в этом графе существует путь, вдоль которого встречаются вершины всех k цветов ровно по одному разу.
|
|
Сложность: 5- Классы: 9,10,11
|
На лугу, имеющем форму квадрата, имеется круглая лунка. По лугу
прыгает кузнечик. Перед каждым прыжком он выбирает вершину и прыгает по
направлению к ней. Длина прыжка равна половине расстояния до этой вершины.
Сможет ли кузнечик попасть в лунку?
|
|
Сложность: 5- Классы: 9,10,11
|
Решите в натуральных числах уравнение (1 + nk)l = 1 + nm, где l > 1.
Страница: 1
2 >> [Всего задач: 7]