ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 105069
УсловиеРаскраска вершин графа называется правильной, если вершины одного цвета не соединены ребром. Некоторый граф правильно раскрашен в k цветов, причём его нельзя правильно раскрасить в меньшее число цветов. Докажите, что в этом графе существует путь, вдоль которого встречаются вершины всех k цветов ровно по одному разу. Решение Цвета, в которые покрашен граф, занумеруем от 1 до k. Те вершины цвета 2, которые не соседствуют ни с какими вершинами цвета 1, перекрасим в цвет 1. Новая раскраска будет правильной, поэтому в ней k цветов. Значит, какие-то вершины цвета 2 не перекрашены и потому соседствуют с вершинами цвета 1. Аналогично, вершины цвета 3, которые не соседствуют с вершинами цвета 2,
перекрасим в цвет 2, и т. д. вплоть до последнего цвета. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |