ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108094
Темы:    [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Окружность, вписанная в угол ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Окружность Ω1 проходит через центр окружности Ω2. Из точки C, лежащей на Ω1, проведены касательные к Ω2, вторично пересекающие Ω1 в точках A и B. Докажите, что отрезок AB перпендикулярен линии центров окружностей.


Решение

Пусть O – центр окружности Ω2. Достаточно доказать, что дуги AO и BO равны. Но это очевидно: на них опираются равные вписанные ориентированные углы  ∠(AC, CO)  и  ∠(OC, CB),  образованные прямой CO и проведёнными из C к Ω2 касательными.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6214
олимпиада
Название Турнир городов
Турнир
Номер 26
Дата 2004/2005
вариант
Вариант весенний тур, основной вариант, 10-11 класс
задача
Номер 2
олимпиада
Название Московская математическая олимпиада
год
Номер 68
Год 2005
вариант
Класс 9
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .